Protein structures

Erdős Gábor, 2017.01.11

Why are we interested?

Function is related to the structure

- Understand biological processes (DNA, RNS, enzymes, hormones, receptors)
- Diseases
- Drug design, protein drug interactions

How to find a specific structure?

- → Database
- → Wordwide Protein Data Bank (wwPDB)
- → 3 entries:
 - → PDB Europe
 - →PDB Japan
 - **ARSCB PDB**
 - → Easy to use
 - → Search by name, ID
 - → Direct links
 - Well maintained

The RCSB PDB is funded by a grant from the National Science Foundation, the National Institutes of Health, and the US Department of Energy

RCSB PDB is a member of the

Yearly Growth of Total Structures

number of structures can be viewed by hovering mouse over the bar

Where do these structures come from?

© 2008 W. H. Freeman and Company

Where do these structures come from?

Most structures are solved by x-ray crystallography (86%)

- Short wavelength (ca. 1.5 Å), so we can measure the distance between atoms
- Brag equation
- The output is an electron density
- Crystallization artefacts
- Not physiological
- Hydrogens are not visible

¹H-NMR (Proton <u>N</u>uclear <u>M</u>agnetic <u>R</u>esonance)

- Solution
- Usually a crowd of structures that fulfill the constrains
- Only small molecules (> 35kDa)
- Less accurate
- Can be used on flexible proteins

Very little by electron microscopy (1%)

Problems with biological samples

- EM is done in high vacuum
- Samples needs to be radiation resistant
- N, O, C (typical biological atoms) have the same EM scatter as water (usual solution)

TEM (Transmission Electron Microscopy)

- Capable of creating sub angstrom resolution images
- Until recently it was unable to work with biological samples
- Two techniques emerged which can deal with biological samples

Negative Staining

Cryo – EM

- Normal solution of the protein is used
- Solution is quickly frozen
- Water cannot form a crystal
 → vitrified water

- Sample is embedded with a heavy salt (usually uranium)
- Dried to a thick layer in low concentration

This technique can overcome all three limitations, but the protein can lose its structure due to the drying

byeezer Vacuum resistance carbon file Radiation resistance Contrast Х Prepare sample **Freeze** grid Collect images https://www.ibiology.org/ibiosemin ars/techniques/eva-nogales-part-1.html image processing structural analysis Model reconstruction

How to find a structure?

In the PDB each atomic coordinate file has a unique ID which contains 4 specific characters First is always a number, a followed by 3 characters that can be either letters or numbers.

F.e.:

- 1mbn The very first structure from 1973, the **myoglobin**
 - Form 1975 yeast phenylalanine transfer RNS, the first RNS structure
 - The first DNA double helix solved in 1980 with X-ray, (confirmation of the Watson & Crick modell from 1953).
 - hd human **hemoglobin**, (deoxy form)
 - insulin
- 1bna

1tna

- 2hhd
- 9ins

The .pdb file format

HEADER	EXT	FRACE	ELLULAF	R MATR	IX			22-JA1	N-98	1A3I
TITLE	X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE									
TITLE	2 PE	EPTII	DE WITH	I THE 1	REPEATIN	IG SEÇ	UENCE	(PRO-PRO-	-GLY)	
EXPDTA	X-I	RAY I	DIFFRAC	CTION						
AUTHOR	R.Z.KRAMER, L.VITAGLIANO, J.BELLA, R.BERISIO, L.MAZZARELLA,									
AUTHOR	2 B.BRODSKY, A.ZAGARI, H.M.BERMAN									
			,,		_,					
REMARK	350 BI	eomo1	LECULE:	: 1						
REMARK	350 AI	PLY	THE FO	DLLOWI	NG TO CH	IAINS:	А, В,	С		
REMARK	350	BION	4T1 1	1.0	00000 0	.0000	00 00.	000000		0.00000
REMARK	350	BION	4T2 1	0.0	00000 1	.0000	00 0.	000000		0.00000
SEORES	1 A	(9 PRO	PRO G	LY PRO F	RO GI	Y PRO	PRO GLY		
SEORES	1 B	(6 PRO	PRO G	LY PRO F	RO GI	LΥ			
SEORES	1 C	(6 PRO	PRO G	LY PRO F	RO GI	LΥ			
~										
ATOM	1	Ν	PRO A	1	8.3	316 2	21.206	21.530	1.00	17.44
ATOM	2	CA	PRO A	1	7.6	508 2	20.729	20.336	1.00	17.44
ATOM	3	С	PRO A	1	8.4	87 2	20.707	19.092	1.00	17.44
ATOM	4	0	PRO A	1	9.4	66 2	21.457	19.005	1.00	17.44
ATOM	5	СВ	PRO A	1	6.4	60 2	21.723	20.211	1.00	22.26
• • •										
HETATM	130	С	ACY	401	3.6	82 2	22.541	11.236	1.00	21.19
HETATM	131	0	ACY	401	2.8	07 2	23.097	10.553	1.00	21.19
HETATM	132	OXT	ACY	401	4.3	06 2	23.101	12.291	1.00	21.19

N C C O C C O O

• • •

The .pdb file format

Atomic Coordinates: PDB Format

Element position within amino acid

Model

The model obtained with NMR or X-ray is not a direct one. Through the measurement we derive the model from a collection of data (NMR spectrum or diffraction pattern).

Resolturion

• Indicates how much can we trust in a position of specific atom

Low: <3.0A Average: 1.8-3.0A Good: 1.0 – 1.8A Atomic: >1.0A

The resolution varies through the structure!

Resolution

Resolution	Meaning
0.5 - 1.5	In general, structures have almost no errors at this resolution. Structures used for Rotamer libraries and geometry studies.
1.5 - 2.0	Few residues have wrong rotamer. Many small errors can normally be detected. Folds are extremely rarely incorrect.
2.0 - 2.5	Fold likely correct, low proportion of sidechains in wrong rotamer. Many small errors can normally be detected. Fold normally correct and number of errors in surface loops is small.
2.5 - 3.0	Fold likely correct except that some surface loops might be mismodelled. Several long, thin sidechains (lys, glu, gln, etc) and small sidechains (ser, val, thr, etc) likely to have wrong rotamers.
3.0 - 4.0	Fold possibly correct, but errors are very likely. Many sidechains placed with wrong rotamer.
>4.0	Individual coordinates meaningless

How good is a structure?

How much is the resolution of the collected data? (In case of X-ray)

R-factor/FreeR-factor (X-ray)

How well does the data fit to the experimental mesurements?

There is no standard for NMR structures

Ramachandran Plot Geometry and stereo-chemistry

How similar are these to good known structures

Conformation of the backbone

The bonds in the backbone of the peptide chain may only have some specific (ϕ , ψ) torsion angles. These constrains creates specific preferred conformations.

Ramachandran plot

- Using the φ, ψ angles we can evaluate a structure
- Each secondary structure has a distinct region
- Glycines and prolines are not represented, they have special conformational preferences

Asymmetric Unit

PISA

Visualization of structures

1. PDB file

2. Program for visualization

F.E.: Rasmol, Pymol, Chimera, VMD, Jmol, Swiss PDB viewer

Why Chimera?

- Free licenses
- Well maintained
- Intuitive
- Not just for visualization
- Subjective

http://www.cgl.ucsf.edu/chimera/

How similar are two structures?

Superposition: Minimizing the distance of positions

RMSD

Root Mean Square Deviation (RMSD):

The most common function used to measure structural similarity

RMSD is the average distance between equivalent atoms of superimposed proteins (generally Ca).

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{i=N} \delta_i^2}$$

Structural alignment

What are the equivalent positions?

- If the sequences are alike we can use that
- In case of low sequence identity we can use the structure

RMSD depends on the equivalent positions

Linker regions may cause problems

MatchMaker: Structure Alignment (Chimera)

- Constructs a pairwise sequence alignments as a guide to superimpose the structures.
- Improves the sequence alignment using a scoring matrix that can include residue similarity, secondary structure and gap penalties.
- Structural Fitting using one point per residue: CA atoms in amino acids and C4' atoms in nucleic acids.

Rotamers

Rotamer libraries

Rotamers are usually defined as low energy side-chain conformations