#### 9. Intrinsically disordered proteins and protein binding regions

## IDPs

- Intrinsically disordered proteins/regions (IDPs/IDRs)
- Do not adopt a well-defined structure in isolation under native-like conditions
- Highly flexible ensembles
- Functional proteins
- Involved in various diseases

### **Protein Structure/Function Paradigm**



Dominant view: 3D structure is a prerequisite for protein function

## p53 tumor suppressor



Wells et al. PNAS 2008; 105: 5762

## Funnels



Flock et al Curr Opin Struct Biol. 2014; 26:62

## **Experimental detection of disorder**

In the literature

Failed attempts to crystallize Lack of NMR signals Heat stability Protease sensitivity Increased molecular volume "Freaky" sequences ...

## Where can we find disordered proteins?

#### In the PDB



Missing electron density regions from the PDB



NMR structures with large structural variations



It classifies intrinsic disorder based on **experimental methods** and three ontologies for **molecular function, transition and binding partner**.

# Sequence properties of disordered proteins

- Amino acid compositional bias
- High proportion of polar and charged amino acids (Gln, Ser, Pro, Glu, Lys)
- Low proportion of bulky, hydrophobhic amino acids (Val, Leu, Ile, Met, Phe, Trp, Tyr)
- Low sequence complexity
- Signature sequences identifying disordered proteins

#### Protein disorder is encoded in the amino acid sequence

## **Prediction of protein disorder**

Can we discriminate ordered and disordered regions ?

Training sets:

Ordered structures come from the PDB

Short and Long disorder

- PDB (L<30)
- DisProt (L>=30)

The two types of datasets differ not just in their lengths

Training sets are small

Unbalanced datasets

### **Prediction methods for protein disorder**

Over 50 methods ...

- Based on amino acid propensity scales or on simplified biophysical models
  - **GlobPlot**, FoldIndex, FoldUnfold, **IUPred**, UCON, **TOP-IDP**
- Machine learning approaches
  - PONDR VL-XT, VL3, VSL2, FIT; Disopred; POODLE S and L;
     DisEMBL; DisPSSMP; PrDOS, DisPro, OnD-CRF, POODLE-W, RONN, ...

## Machine learning approaches

#### INPUT

#### OUTPUT



## **IUPred**

Globular proteins form many favorable interactions to ensure the stability of the structure

Disordered protein cannot form enough favourable interactions

**Energy estimation method** 

Based on globular proteins

No training on disordered proteins

Dosztanyi (2005) JMB 347, 827

# Predicting protein disorder The algorithm: IUPred

...PSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVA PAPAAPTPAA...

Based only on the composition of environment of D's we try to predict if it is in a disordered region or not:



## IUPred: http://iupred.enzim.hu/



## Prediction of protein disorder

- Disordered is encoded in the amino acid sequence
- Can be predicted from the sequence
- ~80% accuracy
- Large-scale studies
  - Evolution
  - Function
- Binary classification

#### Time versus performance plot for different predictors.



© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

#### **Bioinformatics**

## **Genome level annotations**

- Bridging over the large number of sequences and the small number of experimentally verified cases
- Combining experiments and predictions
  - MobiDB: http://mobidb.bio.unipd.it
  - D2P2: http://d2p2.pro
  - IDEAL: http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
- Multiple predictors
- How to resolve contradicting experiments/ predictions?
  - Majority rules

## **MobiDB**



### **Construct optimization**

#### A Disorder Prediction

Estimat

and s

5143





## How common is protein disorder?

Disorder content increases with evolutionary complexity



## Disorder is heterogeneous



For example, NCBD (no ACTR)

For example, zinc fingers (no DNA)

## Structural ensemble PEDB database

The following 2 entries have been returned for your query:

|                                                                                                                                                             |                                                              |                        | Select a           |          |                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|--------------------|----------|-------------------------------------------------------------------------------------------------------|
| ∎ Er                                                                                                                                                        | semble des                                                   | cription o             | f K18 do<br>techni |          | f Tau protein using NMR                                                                               |
| Accesion ID                                                                                                                                                 | Correspondent                                                | Release date           | SAXS data          | NMR data |                                                                                                       |
| 6AAC                                                                                                                                                        | Martin Blackledge                                            | 2013-06-10             | No                 | Yes      |                                                                                                       |
| <ul> <li>● D</li> <li>● D</li> </ul>                                                                                                                        | ownload com<br>ownload struc<br>ownload sequ<br>ownload expe | ture archiviences (.fa | ve (.pdb)<br>sta)  |          | Section ?                                                                                             |
| Authors: Markus Zweckstetter; Martin Blackledge; Valery Ozenne;<br>Robert Schneider; Mingxi Yao; Jie-rong Huang; Loic Salmon; Malene<br>Ringkjobing Jensen; |                                                              |                        |                    |          | Keywords: asteroids; flexible-meccano<br>intrinsically disordered; NMR; single residue<br>resolution; |



## How IDPs carry out their functions?

Entropic chains

Function directly results from disordered state

Molecular recognition Coupled folding and binding

"Assemblages"

Functional sites formed by phase separation

### Protein interactions of IDPs



## **Coupled folding and binding**

- Entropic penalty
- Functional advantages
  - Weak transient, yet specific interactions
  - Post-translational modifications
  - Flexible binding regions that can overlap
  - Evolutionary plasticity





## **Interactions of IDPs**

- Complexes of IDPs in the PDB: ~ 200
- Known instances: ~ 2 000
- Estimated number of such interactions in the human proteome: ~ 1 000 000

- Experimental characterization is very difficult
  - Low expression level
  - Sensitive to proteolysis
  - Experimental methods are tailored for globular proteins

Computational methods

## Prediction of binding sites located within IDPs



- Interaction sites are usually linear (consist of only 1 part)
- enrichment of interaction prone amino acids
- can be predicted from sequence without predicting the structure

#### Heterogeneity

- adopted secondary structure elements
- size of the binding regions
- flexibility in the bound form



## **Disordered protein complexes**



• Interaction sites are usually *linear* (consist of only 1 part)

 enrichment of interaction prone amino acids

#### Sequence



No need for structure, binding sites can be predicted from sequence alone

Complex between p53 and MDM2

**Binding sites** 

# Prediction of disordered binding regions – ANCHOR

What discriminates disordered binding regions?

- A cannot form enough favorable interactions with their sequential environment
- It is favorable for them to interact with a globular protein

Based on simplified physical model

- Based on an energy estimation method using statistical potentials
- Captures sequential context

# Prediction of disordered binding regions - ANCHOR







