10. Linear motifs, post-translational modifications, molecular switches

Short (3-10 residues), sequentially localized motifs that mediate the interaction with a common protein partner/domain:

Interaction partners of nuclear receptors:

Common interaction motif: (LIG_NRBOX)

PA2G4:	MEVQDAE <mark>l</mark> ka <mark>ll</mark> qssasrkt
NRIP1:	DSIVLTY <mark>L</mark> EG <mark>LL</mark> MHQAAGGS
NcoA6:	MREAPTS <mark>L</mark> SQ <mark>LL</mark> DNSGAPNV
NcoA2:	DSKGQTK <mark>l</mark> lQ <mark>ll</mark> TTKSDQME
CBP:	AASKHKQ <mark>l</mark> se <mark>ll</mark> rggsgssi

Linear Motifs

SLiMs = "Short Linear Motif":

- Short functional modules (3–10 aa long)
- Mediate transient interactions
- Usually reside within IDRs
- Function independently of the rest of the protein

Regular expressions

Defined positions

Fixed positions

Degenerate positions

Un-defined positions

Fixed length

Flexiible length

LIG_CYCLIN_1: [RK]xLx{0,1}[FYLIVMP]

L: one type of amino acid "L"=Leucine

[KR]: group of allowed types of amino acid in the given position

x or . : anything (no restriction)

{0,1}: variable length

Frequency of common linear motif binding domains

DOMAIN FREQUENCIES FROM PFAM (HUMAN PROTEOME)

Domain Family	Frequency [Domains / Proteins]	Pattern of recognized motif
PDZ	573 / 342	[ST]x[ACVILF] -COOH
SH3	451 / 382	PxxP
SH2	237 / 219	pTxx[IV]
WW	151 / 103	PPxY
PTB	142 / 133	NPx p Y

Linear motifs in viruses

Review

How viruses hijack cell regulation

Norman E. Davey¹, Gilles Travé² and Toby J. Gibson¹

¹ Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany ² Equipe Oncoproteines, FRE CNRS 3211, ESBS, 1, Bld Sébastien Brandt, BP10413, 67412 Illkirch, France

http://elm.eu.org

Cell compartment (one or several):	Context information	 as instances for each class have been added to the database. ELM database update The ELM classes LIG_APCC_TPR_1 and
not specified	Type in species name (auto-completion):	LIG_PAM2_2 have been added to the database and
extracelular nucleus cytosol peroxisome glycosome Golgi apparatus endoplasmic reticulum lysosome endosome plasma membrane mitochondrion	Motif Probability Cutoff: 100 Submit Reset Form	■LIG_MYND has been split into multiple classes: ELM:■LIG_MYND_1, ELM:■LIG_MYND_2, and ELM:■LIG_MYND_3. Furthermore, ELM class ■LIG_EVH1_1 has been updated, and several new Instances have been added to the database.
		Featured paper:
Disclaimer Short patterns applied to proteins are	usually not statistically significant: Therefore we can't provide E-values as with	"A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by

ELM is a REPOSITORY of more than 240 thoroughly annotated motif classes with over 2700 annotated instances.

It is also a PREDICTION TOOL to detect these motifs in protein sequences employing different filters to distinguish between functional and nonfunctional motif instances

Class

Condensed information about a motif Regular expression is used to annotate the motif

Instance

An experimentally verified instance of an ELM class in a particular sequence.

- Experimental Evidences
- Methods
- References
- Interactions

Types of linear motifs

Percentages of ELM classes (outer ring) and instances (inner ring) by type.

Known linear motifs can be used for predictions as well

Main problem – hits are dominated by random occurences e.g the xLxxLLx motif can be foun in 40% of human proteins

>sp|P48552|NRIP1_HUMAN MTHGEELGSDVHQDSIVLTYLEGLLMHQAA GGSGTAVDKKSAGHNEEDQNFNISGSAFPT CQSNGPVLNTHTYQGSGMLHLKKARLLQSS EDWNAAKRKRLSDSIMNLNVKKEALLAGMV DSVPKGKQDSTLLASLLQSFSSRLQTVALS QQIRQSLKEQGYALSHDSLKVEKDLRCYGV ASSHLKTLLKKSKVKDQKPDTNLPDVTKNL IRDRFAESPHHVGQSGTKVMSEPLSCAARL...

N terminal regions of NRIP protein (disordered) >sp|Q8WZ42|TITIN_HUMAN Titin MTTQAPTFTQPLQSVVVLEGSTATFEAHIS GFPVPEVSWFRDGQVISTSTLPGVQISFSD GRAKLTIPAVTKANSGRYSLKATNGSGQAT STAELLVKAETAPPNFVQRLQSMTVRQGSQ VRLQVRVTGIPTPVVKFYRDGAEIQSSLDF QISQE(DLYSLLIAEAYPEDSGTYSVNATN SVGRATSTAELLVQGEEEVPAKKTKTIVST AQISESRQTRIEKKIEAHFDARSIATVEMV...

Ig domain of titin protein (ordered)

Filtering of false positive hits

- Cellular localization
- Conservation
- Structure filter

Summary for sequence 'Q9Y6I3'.

(Mouseover the matches for more details)

ANCHOR and linear motifs

NCOA2 transcription co-activator

A 600-800 region is completely disordered, Contains 3 receptor linear motifs

Conservation

The functionality of a protein segment is often approached by investigating the evolutionary history of its primary sequence

Can this approach used for disordered proteins?

Sometimes ...

Conservation of motifs

Conservation patterns of linear motifs

No evolutionary constraints to keep the structure Strong constraints on functional site

С

Island-like conservation

Davey et al. Nucleic Acids Res. 2012; 40:10628

SlimPrints

Generates sequence alignments of orthologous sequences

Relative conservation score per position

Filters out less reliable regions

Fails if sequences are too divergent, or too similar

http://bioware.ucd.ie/slimprints.html.

Phospho.ELM

Database of experimentally verified phosphorylation sites in eukaryotic proteins. Current release contains 8,718 protein entries covering more than 42,500 instances. (Instances are fully linked to literature references.)

Phospho. E III a database of S/T/Y phosphorylation sites							
Home	PhosphoBlast	Contribute	Download	Help	Links	About	
S	EARCH						
	for phosphoryletion sites in protein (eg. Paxillin, Shc, MAPK) by UniPROT accession or Ensem (eg. P12931 or P55211) by selected kinase (List): None	s using protein name or gene n] bl identifier:]	amo				
	 by selected phospho-peptide bindir (None 	ng domain (List):					
	Choose which organisms to include All Caenorhabditis Drosophila Vertebrates	s]					
	Do not show high throughput data	0					
	Output as Comma-Separated-Value	es (.csv) 🗆					

Output example of a Phospho.ELM search using the Cyclin dependent kinase inhibitor 1B (UniProt P46527) as query.

Holger Dinkel et al. Nucl. Acids Res. 2010;nar.gkq1104

© The Author(s) 2010. Published by Oxford University Press.

Nucleic Acids Research

PhosphoSitePlus® (PSP) is an online systems biology resource providing comprehensive information and tools for the study of protein post-translational modifications (PTMs) including phosphorylation, ubiquitination, acetylation and methylation. See About PhosphoSite above for more information.

Please cite the following reference for this resource: Hornbeck PV, et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res, 43:D512-20, [reprint]

A PROTEIN MODIFICATION RESOURCE

Protein Name: Y							
ADVAN	ICED SEARCH AND BROWSE OPTIONS						
J'res	Protein, Sequence, or Reference Search						
Ŷ	Site Search						
Ç, Y**Y	Comparative Site Search						
	Browse MS2 Data By Disease						
	Browse MS2 Data by Cell Line						
Ar	Browse MS2 Data by Tissue						

DEATEIN OF SUBSTRATE SEADON

DOWNLOADS, LINKS & APPLICATIONS

Reprints, References, Supplemental Tables

Downloadable Datasets

WHAT'S NEW

Dec 2014 Download PhosphoSitePlus, 2014: mutations, PTMs and re-calibrations. Nucleic Acids Res.(2015) 43:D512-20.

Aug 2014 Download PTMVar dataset: Overlap of disease missense mutations & genetic variants, with their corresponding PTMs and flanking sequences.

Jul 2012 Download Datasets of Regulatory or Disease-Associated Sites.

Dec 2011 Download "PhosphoSitePlus: a comprehensive resource..." in January 2012 issue of Nucleic Acids Research.

Jul 2011 Multiple Sequence Alignment (MSA) added to the Protein Page.

SITE STATISTICS

	TOTAL	NON-REDUNDANT
Proteins:	52,894	20,102
Sites, all types:	469,617	372,630
Low throughput (LTP) sites:	21,665	16,840
High throughput (HTP) MS sites:	459,259	364,806
MS peptides:	2,145,451	430,687
Number curated papers:	19,769	

MODIFICATION SITE STATISTICS, NON-REDUNDANT:

Acetylation:	36,280	Caspase cleavage:	482
Di-Methylation:	2,583	Methylation:	192
Mono-Methylation:	4,999	O-Galnac:	2,118
O-Glcnac:	1,456	Phospho-Ser:	156,203
Phospho-Thr:	64,379	Phospho-Tyr:	42,164
Succinylation:	4,628	Sumoylation:	852
Tri-Methylation:	322	Ubiquitylation:	56,725

Modification for p53

Modification Sites and Dom	nains		Show	w Modification Legend
		С	lick here to view phosphoryla	tion modifications only
p53 (human) 393 amino a	acids 🔲 Hide sites with only 1 MS/HTP re	ference Show only sites	with more than 5 references	
S9 S20 S6 T18 S37 T55 P4 S15 S33 S46 D6 €	R110 S106 Y126 T150 K101 K120 K139 T155 1 T81 S99 H115 K132 S149 K164	Y220 S215 R213 T211 Y234 S183 R209 C229	K321 S315 S314 S313 R337 K292 T312 Y327 K291 K305 K320 R335 S269 T284 T304 K319 R333	K382 S378 T377 K373 K370 K370 T387 S362 S376 S392 K357 S371 K386 K351 S366 K381
P53_TAD	P53		P53_tetra	amer
- 0 50	100 150	200 250	300	350

Modification Sites in Parent Protein, Orthologs, and Isoforms

Show	Multiple	Sequence	Alignment
------	----------	----------	-----------

LTP	<u>HTP</u>		<u>human</u>		<u>mouse</u> ▼ Show Isoforms		<u>rat</u>		rabbit		monkey
6	0	P4	MEEPQsDPsVE	s4-p	MEEsQsDIsLE	s4-p	MEDsQsDMsIE	S4	MEESQSDLSLE	P4	MEEPQSDPSIE
31	4	S6-p	MEEPQsDPsVEPP	86-p	MEEsQsDIsLELP 🕌	86-p	MEDsQsDMsIELP	S 6	MEESQSDLSLEPP	S 6	MEEPQSDPSIEPP
34	3	89-p	EEPQsDPsVEPPLsQ 🎇	89-p	EEsQsDIsLELPLsQ	89-p	EDsQsDMsIELPLsQ	S 9	EESQSDL <mark>S</mark> LEPPLSQ	S 9	EEPQSDPSIEPPLsQ
374	4	S15-p	PsVEPPL <mark>s</mark> QEtFsDL 🎇	S15-p	IsLELPL <mark>s</mark> QEtFsGL 🎇	S15-p	MsIELPL <mark>s</mark> QEtFsCL 🕌	S15	LSLEPPLSQETFSDL	S15-p	PSIEPPLsQETFSDL
30	0	T18-p	EPPLsQEtFsDLWKL 🎇	T18-p	ELPLsQEtFsGLWKL	T18-p	ELPLsQEtFsCLWKL	T18	EPPLSQETFSDLWKL	T18	EPPLsQETFSDLWKL
114	1	S20-p	PLsQEtFsDLWKLLP 🎇	S20-p	PLsQEtFsGLWKLLP 🎇	S20-p	PLsQEtFsCLWKLLP	S20	PLSQETFSDLWKLLP	S20	PLsQETFSDLWKLLP

Show Modification Legend

SLiMs

are compact, degenerate protein interaction interfaces (in IDRs)

are ubiquitous in eukaryotic proteomes and mediate many regulatory functions:

directing ligand binding

providing docking sites for modifying enzymes

controlling protein stability

acting as signals to target proteins to specific subcellular locations

Molecular switches

Intrinsic affinity switch

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Structural Biology

Switches.elm.eu.org

Motif switches: decision-making in cell regulation Kim Van Roey¹, Toby J Gibson¹ and Norman E Davey^{1,2}

Six classes of molecular switch involving IDP

- *****Binary Switch
 - Simple On-Off
- *****Specificity Switch
 - *Multiple On states
- * Motif-Hiding Switch
 - Conditional motif accessibility
- *Cumulative Switch
 - # Graduated rheostat-like
 behaviour
- *Avidity sensing
 - *Sharp, cooperative affinity shift
- *****Sequential Switch
 - Strict logical dependence of execution

http://switches.elm.eu.org

