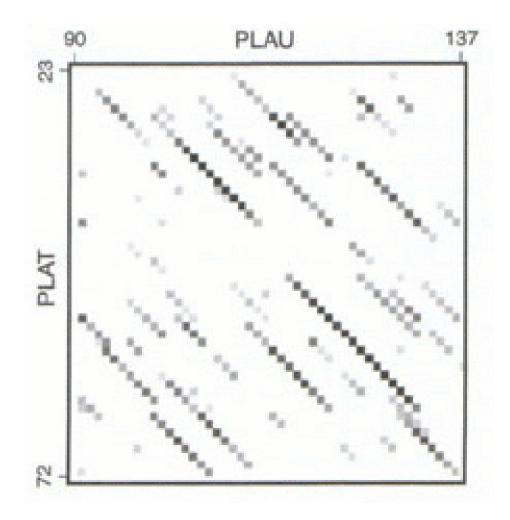
2. Sequence alignments and searches

Sequence homology


Two sequences are homologous, if they have a common ancestor

Two homologous sequences are more likely to have similar function than two unrelated sequences.

orthologs vs paralogs

Comparing sequence pairs

- Dot-matrix
- One sequence in the row,
 the other in the column
 a dot where they agree

Sequence alignment

Alignment: Finding equivalent regions of two or more sequences to maximize their similarity

Often represented using a grid/matrix :

One sequence per row

Residues in the same column are 'equivalent'

Gap characters (usually "-") indicate that the sequence contains no residues 'equivalent' to other residues in that column

Sequence alignment

Score: to evaluate similarity

Substitution matrices

Gap penalty: to account for insertions/deletion

Algorithms can be used to maximize the overall score

- dynamic programming
- heuristic algorithms

Substitution matrices

Assign scores to aligned sequence positions

- Simplest: +1, if identical, 0 otherwise
- Certain amino acid replacements are more common, because they are better tolerated, these should get better scores
- The amino acid substitution matrices assign a score to each possible amino acid replacements (20x20)
- Built from curated multiple sequence alignment of known closely related protein families.
- Most common: PAM, BLOSUM
- Optimal matrix choice depends on task

BLOSUM 62

 \mathbf{S}_{ij} – The substitution score for aligning two residues i and j.

p_{ij} – The probability that we observe residues a and b aligned in homologous sequence alignments.

 \mathbf{q}_{i} and \mathbf{q}_{i} – are background

frequencies

$$\begin{split} & \overset{\text{A}}{\underset{\text{C}}{\text{A}}} \overset{\text{C}}{\underset{\text{C}}{\text{D}}} \overset{\text{D}}{\underset{\text{D}}{\text{B}}} \overset{\text{F}}{\underset{\text{F}}{\text{G}}} \overset{\text{H}}{\underset{\text{I}}{\text{I}}} \overset{\text{K}}{\underset{\text{L}}{\text{L}}} \overset{\text{M}}{\underset{\text{N}}{\text{N}}} \overset{\text{P}}{\underset{\text{P}}{\text{Q}}} \overset{\text{R}}{\underset{\text{R}}{\text{S}}} \overset{\text{T}}{\underset{\text{T}}{\text{V}}} \overset{\text{W}}{\underset{\text{V}}{\text{V}}} \overset{\text{Y}}{\underset{\text{P}}{\text{Y}}} \\ & \overset{\text{A}}{\underset{\text{G}}{\text{A}}} \overset{\text{O}}{\underset{\text{C}}{\text{2}}} \overset{-2}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{1}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\text{1}}} \overset{-1}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}{\text{3}}} \overset{-1}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{C}}}{\underset{\text{C}}}{\underset{\text{C}}}{\underset{\text{C$$

Negative-positive values

Sequence cutoff in original alignments was 62% identity

Gap

Indicates an insertion in one sequence or deletion in all other

- Gaps are usually characterized by two values:
- Gap opening
 - Penalizing the occurrence of a gap in the alignment
- Gap extension
 - if an already existing gap is extended
- Gap extension is usually smaller than gap opening

Dynamic programming

Dynamic programming is a slow method that guarantees to find a mathematically optimal solution, not necessary the biological correct solution.

Objective: to find optimal alignment between sequences a1...an and b1...bn.

Be careful! DP will happily align completely unrelated sequences, the input depends on you!

Sequence identity

How similar are two sequences?:

Calculated from the sequence alignment

Simplest: number of identities compared to the total length of the alignment Number of identities in random cases ???

When is the similarity significant?:

Generally above 30% we can say there is significant similarity

between 20% and 30%: twilight zone

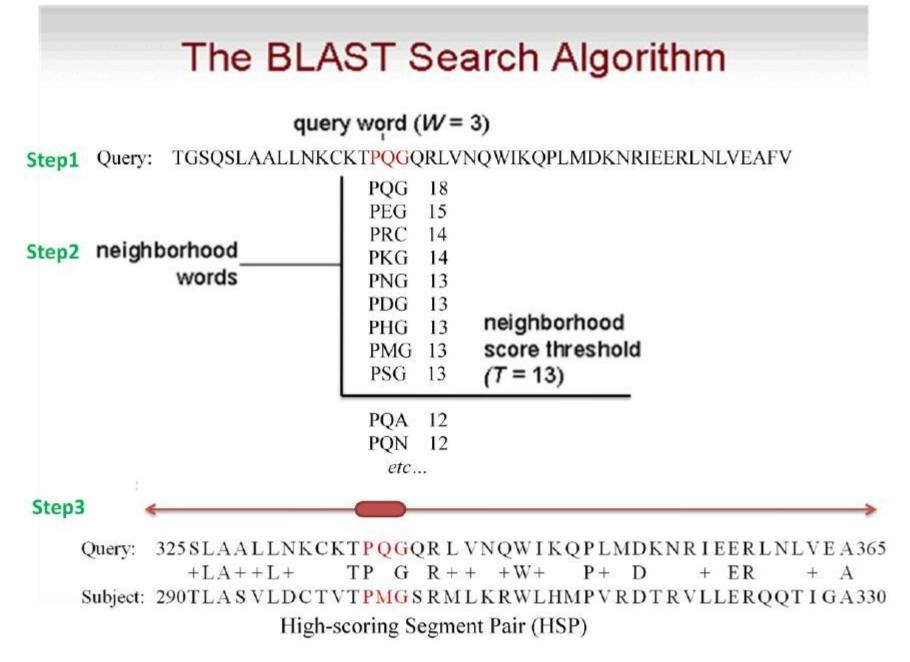
If the number of identities is higher the number of similarities,

it is not likely to be significant

Depends on sequence length!!!!

BLAST – <u>Basic Local Alignment</u> <u>Search Tool</u>

Goal: A fast search for homologous proteins or DNA/RNA sequences in a huge database


Key concept: Homologous sequences expected to contain several very similar short segments without gaps.

Heuristic: Technique designed to solve a problem that ignores whether the solution can be proven to be correct, but which usually produces a good solution...

Statistics: Provides statistical significance of alignments based on score distribution of random local alignments

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J (1990) "basic local alignment search tool" J. Mol. Biol. 215: 403-410

BLAST

The statistics of local sequence comparison

E-value (Expectation Value) The Expect value (E) is a parameter that describes the number of hits one can "*expect" to see by chance* when searching a database of a particular size. The lower the E-value, the more "significant" a match to a database sequence is.

For example, an E value of 1 assigned to a hit can be interpreted as meaning that in a database of the current size one might expect to see 1 match with a similar score simply by chance.

 $E = Kmn e^{-\lambda S}$

m and *n* are the sequences lengths, S is the score found by BLAST K and λ are scales for the search space size and the scoring system.

BLAST Statistics

Score Ident	= : itie	18.5 bit es = 5/5	s (36), (100%),	Expect = 47992 Positives = 5/5 (100%), Gaps = 0/5 (0	8)
Query	1	ELVIS ELVIS	5	 Number of chance alignments = 48 thousand! 	
Sbjct	8	ELVIS	12	 Indistinguishable from chance 	

The most important statistic: Expect value (e-value)

Expected number of random alignments with a particular score or better

Score Ident:	= 8 itie	9.7 bits (204), Expect = 7e-18 s = 50/103 (49%), Positives = 54/103 (52%), Gaps = 18/103 (17%)
Query	1	MKLLAATVLLLTICSLEGALVR MK L VL LL +CSLEGA V • Number of chance alignments = 7 X 10 ⁻¹⁸
Sbjct	1	MKVLVLAMVLLCVCSLEGAVVM • Not due to chance
Query	54	SPELQAEAKSYFEKSKEQLTPLIKKAGTELVNFLSYFVELGTQ 96 E +AK Y E EQ P K TE F +L TQ
Sbjct		The e-value depends directly on the size of the search space (database)
	·	Search the smallest database likely to contain the sequence of interest

What is a significant hit?

E-value (Expectation Value) depends

- Database
- Amino acid composition of the sequence
- Length
- •

There is no absolute cutoff!

Generally 0.001 or 0.0001 is a good starting point

PSI-BLAST <u>Position-Specific-Iterated BLAST</u>

PSI-BLAST is a cycling/iterative method that provides increased sensitivity for detecting distantly related proteins, using the evolutionary information from the protein "family".

PSI-BLAST is still fast – still based on BLAST methods and simple to use

Position-Specific Scoring Matrix PSSM

PSSM amino acid substitution scores are position dependent in a protein multiple sequence alignment. Thus, a Tyr-Arg substitution may score different for different alignment positions.

In PSI-BLAST, a PSSM replaces BLOSSUM in the second iteration of BLAST

			10	20	30	9	40	50	
		*	* *		*		.*	*	
Feature 1		#	#	# #	# #	¥ #	ŧ . 4	¥ #	
1TOT A	7	YT <mark>c</mark> ne	E <mark>C</mark> KhHVe-TRW	H <mark>C</mark> TV	<mark>C</mark> eDYDL <mark>(</mark>		YNTkS	T <mark>H</mark> KMVKW	47
gi 7023094	95	IS <mark>C</mark> DO	G <mark>C</mark> DeIApwHRY	'R <mark>C</mark> LQ	<mark>c</mark> sDMDL <mark>(</mark>	СКТС	FLGgvkpeG	gdD <mark>H</mark> EMVNM	142
gi 50750334	201	VR <mark>C</mark> R\	/ <mark>C</mark> KtfpITg-LRY	'R <mark>C</mark> LK	ClNFDL <mark>(</mark>	QVC	FFTgrhskP	ksS <mark>H</mark> PVVEH	249
gi 50257626	582	SE <mark>C</mark> T1	[<mark>C</mark> LtalFSNRF	K <mark>C</mark> VS(<mark>C</mark> p KFDL <mark>(</mark>	RSC	YQKvdeI	p-A <mark>H</mark> AFLSL	626
gi 47222763	98	II <mark>C</mark> DS	6 <mark>C</mark> KkhgIMg-MRW	K <mark>C</mark> KV	ofDYDL <mark>(</mark>	TQC	YMNnK	dls <mark>H</mark> AFERY	142
gi 40743717	1022	RVCNN	N <mark>C</mark> Lk-eFDegKMV	'S <mark>C</mark> AD(d DFDL	ITC	ILGhk hgH	p-S <mark>H</mark> TFVLL	1068
gi 51261627			G <mark>C</mark> Ss-yLMe-PYI						
gi 16944480	367	RT <mark>C</mark> N(C <mark>C</mark> Iq-dLPeaEFV	'H <mark>C</mark> QT <mark>(</mark>	<mark>C</mark> d DFDL <mark>(</mark>	CKVC	FAKnrhG	hpK <mark>H</mark> AFSPI	413
gi 42546497			C <mark>C</mark> Vq-eHPeaEFL						
gi 40745179	373	II <mark>C</mark> DO	G <mark>C</mark> NaegLA VQY	'H <mark>C</mark> AD(<mark>C</mark> eDYDL <mark>(</mark>	QSC	YKAgtrcgykG	t-Y <mark>H</mark> LEFNA	421

V I F	T	C	N	6	C	G Q	6	E	I		E		R	H Y F	N K H	c	L	T	c
	S					L	ĸ			v		R					N	-	
					sus Se	-	_	lost fr	_	19 occ 11		13 resid	ue at 14	eacn	posit	_	10	10	20
1 Y	2 S	C	4 D	5 G	c	Z L	<u>8</u> K	<u>9</u> P	<u>10</u> I	v	<u>12</u> G	V	R	Y	H	17 C	18 L	<u>19</u> V	20 C
								Maste	r Seque	ence - 1	TOT_A								
7 Y	8 T	9 C	10 N	11 E	12 C	13 K	14 H	Gap	15 H	16 V	17 E	18 T	19 R	20 W	21 H	22 C	23 T	24 V	25 C
				-						-									
Y	S	С	D	С	С	G	К	Р	Ι	W	G	Р	R	W	н	С	N	V	С
F	Т	А	N	G	Α	L	М	E	F	М	E	R	Y	Y	К	N	Q	D	Α
I	Ι	Ι	Н	н	I	Q	G	Н	н	Ι	Р	V	F	F	N	S	Α	Т	К
М	С	L	K	I	L	К	н	D	L	Y	Ν	E	М	I	R	Α	K	E	I
R	F	М	Α	N	М	Ν	N	N	V	Р	R	Н	K	М	E	Ι	L	М	L
V	R	S	E	Α	S	R	Q	Y	М	Т	Α	K	Q	V	A	L	R	N	М
N	Α	Т	R	E	Т	S	S	G	N	V	D	F	V	L	Q	М	S	R	S
Р	K	V	Т	Т	V	D	Т	Т	S	A	K	I	E	Н	S	Т	E	I	Т
S	P	F	Q	Y	F	E	E	A	Y	Q	Q	M	H	A	Т	V	T	Q	V
H	V	W	S	S	W	I	I	L	A	S	S	N	A	C	D	G	D	S	F
L	E	Y	G	V	Y	V	Y	K	C T	D	H	S T	I	K	Y	Н	V	K	G
W	L	G H	M P	L	G H	M	A	Q S	E	L	T C	Y	L	Q R	M F	Q W	M G	A H	N
K	Q	K	P Y	ĸ	K	H	V	V	ĸ	R	M	A	S	S	G	Y	H	L	Q W
Q	D	N	C	M	N	T	R	F	Q	F	V	L	T	T	P	D	I	C	Y
T	н	P	F	Q	P	C	D	I	R	C	w	Q	w	E	r V	E	C	F	D
C	N	Q	I	F	Q	F	F	M	W	E	Y	D	D	G	C	F	F	G	E
D	Y	D	1	P	D	P	C	R	D	Н	F	C	P	N	T	K	P	P	н

PSI-BLAST Algoritmus

I. A standard BLAST search is performed against a database using a substitution matrix (e.g. BLOSUM62).

II. A PSSM (checkpoint) is constructed automatically from a multiple alignment of the highest scoring hits of the initial BLAST search.

III. The PSSM replaces the initial matrix to perform a second BLAST iteration search.

IV. Steps 2 and 3 can be repeated and the new found sequences included to build a new PSSM at each iteration.

Low complexity regions

Statistical estimates don't work well from low complexity regions during sequence searches

QQQQQQQQQQQQQQQQQQQQ|||||||||||||QQQQQQQQQQQ10/10 idIDENTITIESIDENTITIES|||||||||||||IDENTITIES||IDENTITIES10/10 idSIINDIETTEShuffled: 2/10 id

Low complexity regions

It is possible to filter out low complexity regions using the SEG algorithm:

1) Find low complexity segments within a sequence window

2) Neighboring regions are merged

Eliminated common basic, acidic and proline rich regions

Improvements: Composition based statistics

(Wootton and Federhen, 1993)

Types of alignments

Global vs Local

Global alignment: Includes all

characters from each sequence

Pairwise vs Multiple

Pairwise alignment: A sequence

alignment of two sequences.

Local alignment: Includes only the most similar local regions, typically not the whole sequence. Multiple sequence alignment: A sequence alignment of three or more biological sequences.

Exact vs Heuristic

Exact alignment: Generated by dynamic programming which guarantees optimal alignment given scores and gap penalties

<u>Heuristics alignment:</u> Good enough alignment (Blast)

Multiple Sequence Alignment -MSA

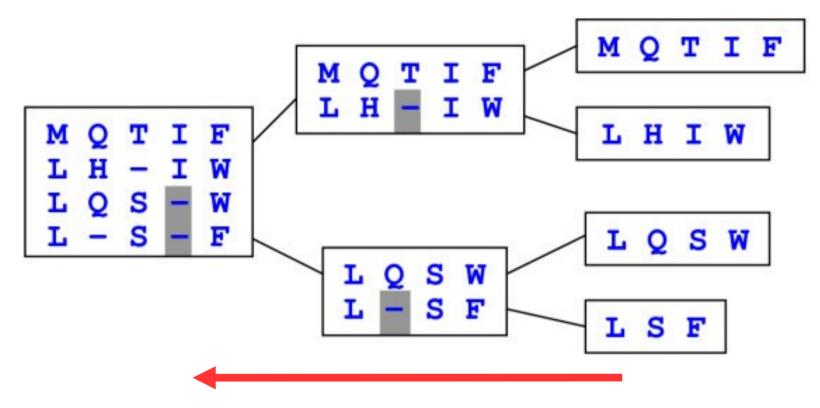
Given a set of proteins, one often wants to find the evolutionary relationship among them, by aligning them.

We expect from a good MSA to highlight the functional regions: conserved residues, motifs, secondary structure tendency etc.

The quality of the alignment is very important.

NP hard problem, heuristic approaches

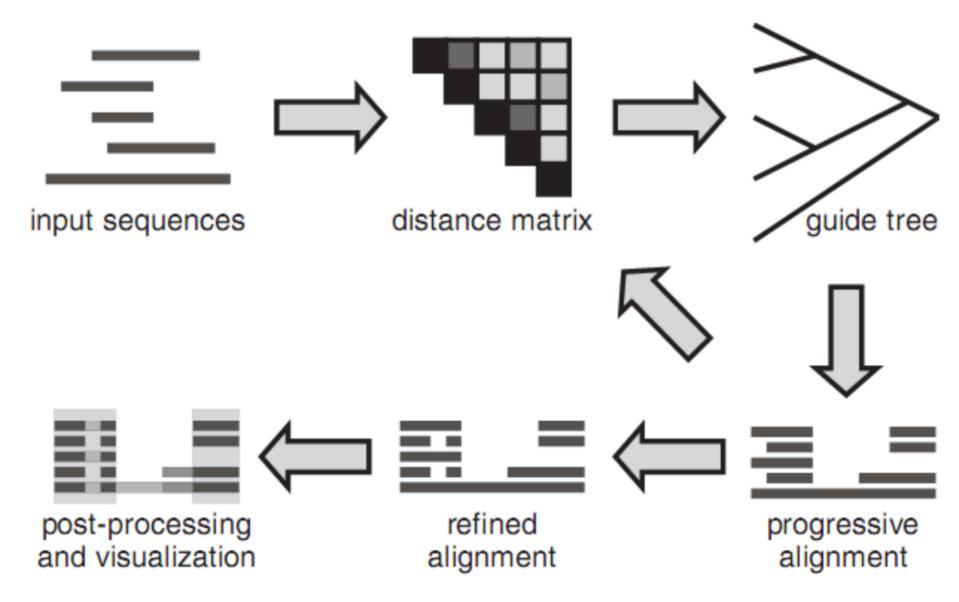
CLUSTALW


CLUSTALW was introduced in 1994 and had become commonly used among biologists.

Three steps:

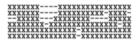
- 1. Pairwise sequence alignment
- 2. Based on the distances tree is generated
- 3. Based on the tree, sequence-sequence, sequence-profile, profile-profile alignments

Clustalw Omega, other methods


ClustalW Main idea: Progressive alignment

The sequence are assigned to the leaves of binary trees. At every inner points, we merge two child profiles based on the alignment.

BMC Bioinformatics 2004, 5:113

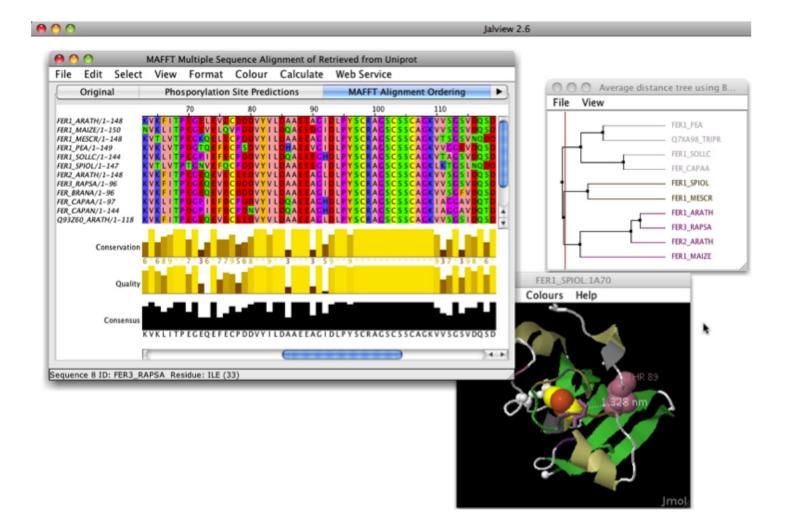

Main Steps in Modern Multiple Sequence Alignment

MUSCLE and MAFFT

- Progressive alignment
- Based on word comparison (approximation)
- Iterative: new distance matrix
- MAFFT: Multiple options

G-INS-I is intended for alignments like this:

				alignments		
000000000000000000000000000000000000000	0000	XXXXXXXXXX XXXXXXXXXXX	XXXXXXX XXXX	XXXXXXX 	00000000	000000
		************	x-xxxx	XXXX-XX	00000000	000000000000000000000000000000000000000


E-INS-I is intended for alignments like this:

00000XXXXXXXXXXXXXXX	-XXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-XXXXX000000000000000000000000000000000
000000000000XXXXXXXXXXXXXXXXXXXXXX	-XXXXXXXXXXX0000
XXXXXXXX-XXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXQ
0000000000000XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX00000000

ALIGNMENT editing

- Pruning
- Removing badly alignable regions can improve further analyzes
- Removing columns based on variability, gap ratio
- Manual
- Some sequence cannot be aligned well
- Manual editing can help, requires expertise

