7. 1D predictions

Why do we need predictions?

	Year 2017
Sequences	71 002 161
Structures	125 526

Types of predictions

Notation: protein structure 1D, 2D, 3D

El Barkhard Rost (Columbia New Sork)

1D predictions

Secondary structure

Accessible surface

Signal sequences

Transmembrane regions

Coiled coils

http://ppopen.rostlab.org/

http://bioinf.cs.ucl.ac.uk/psipred/ Pfam

Determination of secondary structure elements

It can be based on : Dihedral angles Hydrogen bonds Geometry

Automatic assignments DSSP STRIDE

3 (alpha, beta, coil) or more categories (pl. turn, other types of helices)

Don't agree completely

Predicting secondary structure elements from the sequence

Amino acids

Secondary structure elements

Figure 7–12 Relative probabilities that a given amino acid will occur in the three common types of secondary structure.

The various amino acids have different preferences for the secondary structure elements

Stages of secondary structure prediction methods

PHDsec

Principles of prediction methods

I. Testing and training method Separate sets!!!

II. Evaluation

Per residue accuracy Amount predicted Segment overlap

Estimation Methodologies for Classification

- Simple split (or holdout or test sample estimation)
 - Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)

 For ANN, the data is split into three sub-sets (training [~60%], validation [~20%], testing [~20%])

Accuracy

		Condition (as determined by "Gold standard")		
		Condition positive	Condition negative	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Precision = Σ True positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	Negative predictive value =Σ True negativeΣ Test outcome negative
		Sensitivity = Σ True positive Σ Condition positive	Specificity = Σ True negative Σ Condition negative	Accuracy

Coiled Coils

Coiled Coil prediction

COILS : Ismert CC szakaszokhoz való hasonlóság (keratin, Myosin, troponin)

To exclude false positive change weights of hydrophobic residues (h)

PAIRCOIL: uses pair correlation of amino acid within heptad repeats

Prediction accuracy depends on length of coiled coil regions

lower accuracy for multiple coils

Membrane proteins

Important:

Energy production Transport cell-cell connection

Drug targets

THE CELL, Fourth Edition, Figure 2.25 © 2006 ASM Press and Sinauer Associates, Inc.

TM proteins

The known structures of transmembrane proteins belong to two classes, based on their transmembrane secondary structure.

α-helical Bundles Example Bacteriorhodopsin (PDB 1AP9) β-Barrels Example: Matrix Porin (PDB 10MF, Subunit)

Structure determination of TM proteins

TM proteins are no water soluble

They have to taken out from the membrane and solubilized

Detergents

Very few known structures (2%)

Information about the position of membrane is lost

(PDBTM, OPM)

Location of membrane spanning segments and their orientation relative to the membrane

Prediction of TM proteins Hydrophaty scales

Topology prediction

Omit cleaved segments

Topology prediction rules

Hydrophobicity (aa composition) Length distribution Positive inside rules

More difficult cases: reentrant loop

Increasing accuracy

ML approaches (NN, HMM)

Multiple sequence alignments, profiles

Consensus methods

Experimental constraints

HMMTOP

Signal sequences

Signal sequence

N-terminal signal sequence Extracellular space, mitochondria, chloroplast

Depends on species and compartment

For example: secretory signal peptide usually 15-30 AA
3 zones : Positive N-terminal, hydrophobic region, C-terminal polar with some charged residues at the end
Further localozation singals and modes

Prediction of localization

1. Based on sequence Cleavage site PSSM, ML (NN, SVM, HMM) Localization AA composition, other global features

- 2. Based on other information (eg. Expression level, phylogenetics, GO annotation
- 3. Specific domain, homology

What happens if you submit a globular protein to transmembrane predictor?

 In general, transmembrane topology prediction methods are not made to tell whether the protein sequence belongs to a globular or a transmembrane protein

- Some methods can do this

DAS http://mendel.imp.ac.at/sat/DAS/DAS.html

- Sometimes signal sequence prediction methods can help